Examples 16.9.2 Here F denotes the field \mathbb{Q} of rational numbers.
(a) Let α be the "nested" square root $\alpha=\sqrt{4+\sqrt{5}}$. To determine the irreducible polynomial for α over F, we guess that its roots might be $\pm \alpha$ and $\pm \alpha^{\prime}$, where $\alpha^{\prime}=\sqrt{4-\sqrt{5}}$. Having made this guess, we expand the polynomial

$$
f(x)=(x-\alpha)(x+\alpha)\left(x-\alpha^{\prime}\right)\left(x+\alpha^{\prime}\right)=x^{4}-8 x^{2}+11
$$

It isn't very hard to show that this polynomial is irreducible over F. We'll leave the proof as an exercise. So it is the irreducible polynomial for α over F. Let K be the splitting field of f. Then

$$
F \subset F(\alpha) \subset F\left(\alpha, \alpha^{\prime}\right) \quad \text { and } \quad F\left(\alpha, \alpha^{\prime}\right)=K
$$

Since f is irreducible, $[F(\alpha): F]=4$ and since $\sqrt{5}$ is in $F(\alpha), \alpha^{\prime}=\sqrt{4-\sqrt{5}}$ has degree at most 2 over $F(\alpha)$. We don't yet know whether or not α^{\prime} is in the field $F(\alpha)$. In any case, [$K: F$] is 4 or 8 . The Galois group G of K / F also has order 4 or 8 , so it is D_{4}, C_{4}, or D_{2}.

Which of the conjugate subgroups D_{4} might operate depends on how we number the roots. Let's number them this way:

$$
\alpha_{1}=\alpha, \quad \alpha_{2}=\alpha^{\prime}, \quad \alpha_{3}=-\alpha, \quad \alpha_{4}=-\alpha^{\prime}
$$

With this ordering, an automorphism that sends $\alpha_{1} \rightsquigarrow \alpha_{i}$ also sends $\alpha_{3} \rightsquigarrow-\alpha_{i}$. The permutations with this property form the dihedral group D_{4} generated by

$$
\begin{equation*}
\sigma=(1234) \text { and } \tau=(24) \tag{16.9.3}
\end{equation*}
$$

Our Galois group is a subgroup of this group. It can be the whole group D_{4}, the cyclic group C_{4} generated by σ, or the dihedral group D_{2} generated by σ^{2} and τ.

Note: We must be careful: Every element of this group D_{4} permutes the roots, but we don't yet know which of these permutations come from automorphisms of K. A permutation that doesn't come from an automorphism tells us nothing about K.

There is one permutation, $\rho=\sigma^{2}=(\mathbf{1 3})(\mathbf{2 4})$, that is in all three of the groups D_{4}, C_{4}, and D_{2}, so it extends to an F-automorphism of K that we denote by ρ too. This automorphism generates a subgroup N of G of order 2 .

To compute the fixed field K^{N}, we look for expressions in the roots that are fixed by ρ. It isn't hard to find some: $\alpha^{2}=4+\sqrt{5}$ and $\alpha \alpha^{\prime}=\sqrt{11}$. So K^{N} contains the field $L=F(\sqrt{5}, \sqrt{11})$. We inspect the chain of fields $F \subset L \subset K^{N} \subset K$. We have $[K: F] \leq 8$, $[L: F]=4$, and $\left[K: K^{N}\right]=2$ (Fixed Field Theorem). It follows that $L=K^{N}$, that $[K: F]=8$, and that G is the dihedral group D_{4}.
(b) Let $\alpha=\sqrt{2+\sqrt{2}}$. The irreducible polynomial for α over F is $x^{4}-4 x^{2}+2$. Its roots are $\alpha, \alpha^{\prime}=\sqrt{2-\sqrt{2}},-\alpha,-\alpha^{\prime}$ as before. Here $\alpha \alpha^{\prime}=\sqrt{2}$, which is in the field $F(\alpha)$. Therefore α^{\prime} is also in that field. The degree $[K: F]$ is 4 , and G is either C_{4} or D_{2}.

Because the operation of G on the roots is transitive, there is an element σ^{\prime} of G that sends $\alpha \rightsquigarrow \alpha^{\prime}$. Since $\alpha^{2}=2+\sqrt{2}$ and $\alpha^{\prime 2}=2-\sqrt{2}, \sigma^{\prime}$ sends $\sqrt{2} \rightsquigarrow-\sqrt{2}$ and $\alpha \alpha^{\prime} \rightsquigarrow-\alpha \alpha^{\prime}$.

