Examples 16.9.2 Here F denotes the field \mathbb{Q} of rational numbers.

(a) Let α be the "nested" square root $\alpha = \sqrt{4 + \sqrt{5}}$. To determine the irreducible polynomial for α over F, we guess that its roots might be $\pm \alpha$ and $\pm \alpha'$, where $\alpha' = \sqrt{4 - \sqrt{5}}$. Having made this guess, we expand the polynomial

$$f(x) = (x - \alpha)(x + \alpha)(x - \alpha')(x + \alpha') = x^4 - 8x^2 + 11.$$

It isn't very hard to show that this polynomial is irreducible over F. We'll leave the proof as an exercise. So it is the irreducible polynomial for α over F. Let K be the splitting field of f. Then

$$F \subset F(\alpha) \subset F(\alpha, \alpha')$$
 and $F(\alpha, \alpha') = K$.

Since f is irreducible, $[F(\alpha):F]=4$ and since $\sqrt{5}$ is in $F(\alpha)$, $\alpha'=\sqrt{4-\sqrt{5}}$ has degree at most 2 over $F(\alpha)$. We don't yet know whether or not α' is in the field $F(\alpha)$. In any case, [K:F] is 4 or 8. The Galois group G of K/F also has order 4 or 8, so it is D_4 , C_4 , or D_2 .

Which of the conjugate subgroups D_4 might operate depends on how we number the roots. Let's number them this way:

$$\alpha_1 = \alpha$$
, $\alpha_2 = \alpha'$, $\alpha_3 = -\alpha$, $\alpha_4 = -\alpha'$.

With this ordering, an automorphism that sends $\alpha_1 \leadsto \alpha_i$ also sends $\alpha_3 \leadsto -\alpha_i$. The permutations with this property form the dihedral group D_4 generated by

(16.9.3)
$$\sigma = (1234)$$
 and $\tau = (24)$.

Our Galois group is a subgroup of this group. It can be the whole group D_4 , the cyclic group C_4 generated by σ , or the dihedral group D_2 generated by σ^2 and τ .

Note: We must be careful: Every element of this group D_4 permutes the roots, but we don't yet know which of these permutations come from automorphisms of K. A permutation that doesn't come from an automorphism tells us nothing about K.

There is one permutation, $\rho = \sigma^2 = (13)(24)$, that is in all three of the groups D_4 , C_4 , and D_2 , so it extends to an F-automorphism of K that we denote by ρ too. This automorphism generates a subgroup N of G of order 2.

To compute the fixed field K^N , we look for expressions in the roots that are fixed by ρ . It isn't hard to find some: $\alpha^2 = 4 + \sqrt{5}$ and $\alpha \alpha' = \sqrt{11}$. So K^N contains the field $L = F(\sqrt{5}, \sqrt{11})$. We inspect the chain of fields $F \subset L \subset K^N \subset K$. We have $[K:F] \leq 8$, [L:F] = 4, and $[K:K^N] = 2$ (Fixed Field Theorem). It follows that $L = K^N$, that [K:F] = 8, and that G is the dihedral group D_4 .

(b) Let $\alpha = \sqrt{2 + \sqrt{2}}$. The irreducible polynomial for α over F is $x^4 - 4x^2 + 2$. Its roots are α , $\alpha' = \sqrt{2 - \sqrt{2}}$, $-\alpha$, $-\alpha'$ as before. Here $\alpha\alpha' = \sqrt{2}$, which is in the field $F(\alpha)$. Therefore α' is also in that field. The degree [K:F] is 4, and G is either C_4 or D_2 .

Because the operation of G on the roots is transitive, there is an element σ' of G that sends $\alpha \leadsto \alpha'$. Since $\alpha^2 = 2 + \sqrt{2}$ and ${\alpha'}^2 = 2 - \sqrt{2}$, σ' sends $\sqrt{2} \leadsto -\sqrt{2}$ and $\alpha \alpha' \leadsto -\alpha \alpha'$.